
Decision Making with Dynamically Arriving Information

Meir Kalech1

Avi Pfeffer2

1Information Systems Engineering Department, Ben-Gurion University, Israel, kalech@bgu.ac.il
2Charles River Analytics, USA, apfeffer@cra.com

ABSTRACT
Decision making is the ability to decide on the best alternative among a set
of candidates based on their value. In many real-world domains the value
depends on events that occur dynamically, so that the decision is based on
dynamically changing uncertain information. When there is a cost to wait-
ing for more information, the question is when to make the decision. Do you
stop and make the best decision you can, given the information you have so
far, or do you wait until more information arrives so you can make a better
decision? We propose a model that characterizes the influence of dynamic
information on the utility of the decision. Based on this model, we present
an optimal algorithm that guarantees the best time to stop. Unfortunately,
its complexity is exponential in the number of candidates. We present an al-
ternative framework in which the different candidates are solved separately.
We formally analyze the alternative framework, and show how it leads to a
range of specific heuristic algorithms. We evaluate the optimal and the sim-
plest heuristic algorithms through experiments, and show that the heuristic
algorithm is much faster than the optimal algorithm, and the utility of the
winner it finds is close to the optimum.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Intelligent agents

General Terms
Algorithms, Theory

Keywords
Agent Reasoning::Reasoning (single and multi-agent), Economic
paradigms::Electronic markets

1. INTRODUCTION
How to make decisions when faced with dynamically changing

information is an important problem. Do you stop at a particular
point and make the best decision you can, given the information
you have so far, or do you wait until more information arrives so
you can make a better decision? When there is a cost to waiting,
this problem becomes nontrivial. As an example, consider a meet-
ing scheduling system. Determining the best time for a meeting
could depend on many factors like other meetings, location and
attendees. Typically, these factors may change dynamically. The

Cite as: Decision Making with Dynamically Arriving Information, Meir
Kalech, Avi Pfeffer, Proc. of 9th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
�����
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

longer one waits, the more information becomes available, and the
higher the probability of choosing the best time. However, waiting
to make the decision could be associated with a cost, for instance
because the chosen time slot might no longer be available. The
challenge of this research is to determine the best time to make the
decision, i.e., the time that maximizes the utility (which increases
in the certainty of the information) and minimizes the cost.

In this paper, we develop a model for representing the arrival of
dynamic information and its influence on the utilities of the can-
didates. We present an optimal algorithm that guarantees the best
decision, trading off certainty for waiting cost. We show that, un-
fortunately, the complexity of this algorithm is exponential in the
number of candidates. We therefore develop an alternative heuris-
tic framework for solving the problem in which the different can-
didates are solved separately. We formally analyze this framework
and show that the calculations it performs are exactly correct, but
that it approximates the true solution by considering different poli-
cies from the optimal algorithm. We then discuss how this frame-
work translates into a suite of heuristic algorithms, depending on
how a key probability is computed. We show that the complexity
of the simplest heuristic algorithm is only polynomial in the num-
ber of candidates.

We compare the simplest heuristic algorithm to the optimal al-
gorithm and two more baseline algorithms, one that makes the de-
cision in the beginning and the other that makes the decision after
obtaining the whole information. We evaluate the algorithms in
terms of quality of the utility of the decision and runtime. We show
that the heuristic runs much faster than the optimal algorithm, and
the utility of the winner it finds is close to the optimum.

2. RELATED WORK
Our work is related in some aspects to Horvitz’s work [8, 7]

on decision making under bounded resources. The execution of a
task is associated with a utility and a cost depending on resources.
When the resources are bounded, the question is: What is the best
stopping point to mostly satisfy the task? Horvitz presents the use
of an expected value of computation to determine the best time to
stop. The major difference is that whereas in that work the goal
is to execute a single task, in our work we are seeking to select a
candidate out of multiple candidates. In particular, we want to do
this in a way that scales reasonably with the number of candidates.

Another class of work addresses monitoring anytime algorithms
[17], which search for the best possible answer under the constraint
of limited time and/or resources. One question for this class of al-
gorithms is how to optimally decide the time to stop. For instance,
Finkelstein and Markovitch [4] developed algorithms that design
an optimal query schedule to detect satisfaction of a given goal.
Their aim is to minimize the number of queries (which are time

267

267-274

consuming) to reach the goal. We, too, propose to minimize the
amount of information. However, in our problem we do not satisfy
a known goal or task but we search for the best candidate that max-
imizes the utility. This difference is significant, since in anytime
algorithms there is only a single decision about whether to stop or
whether to continue a single algorithm, rather than to attempt to
select a candidate among multiple candidates.

Hansen and Zilberstein [6] developed a framework for run-time
monitoring of anytime algorithms. In this framework, they consid-
ered the question of when to stop a deliberation based on various
factors like time, cost of delay and quality of solution. In our work,
on the other hand, we do not propose to investigate the right time
for a computation task, but rather we plan to find the right time to
increase the likelihood of the selection of the best candidate.

Another series of papers that address decision making under un-
certainty relate to multi-attribute decision making (MADM) [16,
3]. In MADM, the decision maker evaluates the candidates’ out-
come based on given attributes. There are several works relat-
ing to MADM under uncertainty, but most of them do not deal
with attributes that change dynamically. For instance, Keeney and
Raiffa [11] address uncertainty of the utility function. Lahdelma
and Salminen [12, 13] focus on measurement of uncertainty at-
tributes. Many works ([15, 10, 9]) deal with incomplete informa-
tion about the attributes’ weight. The challenge in this paper is,
however, to determine the best candidate when the attributes (in
our terms information) are changing dynamically.

Finally, the tradeoff between uncertainty and cost relates to the
optimal stopping problem (OSP) [2, 14]. In both problems the chal-
lenge is to determine when to stop the process so as to maximize
the utility. However, there is a basic difference between the two.
The decision we obtain in our problem is based on multiple alter-
natives, while in OSP, when to stop is made only for one alternative.
Multiple alternatives increase the complexity exponentially.

3. MODEL DESCRIPTION
To motivate the model we use an example of a simple stock mar-

ket. Assume an agent’s goal is to buy the best stock among three
stocks (c1, c2, c3). The current value of each stock is obviously
known but will change over time. For instance, stocks c1 and c2

may be affected by the interest decreasing in February. c1 may also
be affected by the publication of the company’s balance sheet in
April; the same for c3 in March. Finally, c2’s value may be af-
fected by a launching of a new technology in May and at the same
time c3’s company is expected to sell real estate that may influence
the stock value.

The agent cannot evaluate the influence of the future events on
the stocks for certain, but with some probability. Obviously, the
sooner the agent makes the decision the less it loses by not investing
its money. On the other hand, the more time it waits the more infor-
mation it gathers by knowing the outcome of the expected events,
and the more certain decision it could make.

In our model, each decision will be designated by a candidate,
and throughout the paper we will refer to the candidate set C =
{c1, c2, ..., cn}. A candidate’s utility depends on dynamically ar-
riving information. We represent the dynamic information by ran-
dom variables. The most fundamental entity is a variable.

DEFINITION 1 (TIMED VARIABLE). A variable consists of a
discrete, finite random variable X taking values x1, ..., xn, and a
time stamp Γ(X).

An example of a variable is the interest decreasing in the stock
domain, whose time stamp is 1 (assuming January is 0). Each vari-
able is associated with a probability distribution over outcomes.

DEFINITION 2 (ASSIGNMENT). If X is a variable, an assign-
ment to X is an outcome xi of X . Two sets of assignments are con-
sistent if they do not contain different outcomes of the same vari-
able. A time t global assignment, denoted σt, is an assignment of
values to all variables whose time stamp is less than or equal to t.

Each candidate’s utility depends on a set of variables. We repre-
sent the way the utility depends on these variables by a tree.

DEFINITION 3 (CANDIDATE TREE). A candidate tree cti for
candidate ci is a tree in which the internal nodes are timed vari-
ables. The variable corresponding to the node n is denoted X(n).
The edges out of the node n are the possible assignments to X(n).
Each edge X = x is labeled by its probability, denoted p(X = x).
A leaf n is labeled by its utility U(n).

The nodes along a path in the tree must be in increasing order of
time. The variables appearing in cti are denoted by Vi. Candidate
ci’s utility depends on those variables. The variable space V is the
union of all the candidates’ sets: V =

⋃
i Vi. Two candidates can

be affected by the same timed variable; we call such a variable a
common variable. If a variable is a common variable, it must have
the same time stamp and probability distribution over assignments
in all trees in which it appears. The interest decreasing, for ex-
ample, is a common variable since both c1 and c2 are affected by
it.

0.8

0.2 0.8 0.9 0.1

0.6 0.4
v1,t=1

v3,t=3 v4,t=4

0.55 0.6 0.65

Figure 1: Candidate tree ct1.

0.75

0.2 0.8 0.4 0.6

0.7 0.3
v2,t=2

v3,t=3 v5,t=4

0.4 0.7 0.45

Figure 2: Candidate tree ct2.

Figures 1 and 2 present two candidate trees. For instance, the
variable labeled v3, t = 3 in ct1 represents variable v3 at time
t = 3. The probability of its left edge is 0.8 and of its right edge is
0.2. The value 0.8 in the left leaf of ct1 represents the utility of the
path {v1, v3} through probabilities 0.4 and 0.8. This root to leaf
path represents one possibility of assignments sequence that deter-
mines the utility of the candidate. Variable v3 represents a common
variable for c1 and c2 For this reason, their outgoing edges have
the same probability distribution. We assume that different vari-
ables are independent, and the only interaction between different
candidates is via common variables.

The utility of a candidate is known for certain only at the leaves.
However, the expected utility of a candidate can be calculated at
any depth and will consider the subtree from that depth. The ex-
pected utility computation can be trivially implemented by a re-
cursive function. The expected utility of a leaf is its utility; for
an internal node it is the expectation of the expected utilities of its
children. Formally:

DEFINITION 4 (EXPECTED UTILITY). Given a node n ∈ cti,
the function EU(n), returns the expected utility of n:

EU(n) =

{
U(n) n is a leaf∑

i p(X(n) = xi)EU(ni) otherwise

where ni represents the successor node of n via assignment X =
xi.

268

For instance, the expected utility of the root in Figure 1 is: 0.4 ∗
(0.8 ∗ 0.8 + 0.2 ∗ 0.55) + 0.6 ∗ (0.9 ∗ 0.6 + 0.1 ∗ 0.65) = 1.77.

The expected utility is only an estimate of the real utility, based
on the information known at the current time. Waiting to the next
time reduces the uncertainty about the candidates’s utilities and
hence increases the chance to make a good decision. However,
waiting incurs a cost.

DEFINITION 5 (COST). Each assignment a is associated with
a waiting cost, denoted CST (a).

The cost of a node is the sum of the waiting costs of assignments
in the path to the node.

DEFINITION 6 (PATH). Given a node n ∈ cti, the function
PT H(n), returns the set of assignments in the root to n path.

The cost of node n is
∑

j CST (xj ∈ PT H(n)). The expected
gain is the difference between the expected utility and the cost:

DEFINITION 7 (EXPECTED GAIN). Given node n ∈ cti,

GN (n) = EU(n) −
∑

j

CST (xj ∈ PT H(n))

There is a tradeoff between between the first component of GN ,
the expected utility, and the second component, the waiting cost.
The challenge of this paper is to present algorithms to find the time
that maximizes the gain. One might be tempted to define the op-
timal decision problem as finding in advance the best time to stop,
and when that time is reached choosing the candidate with the high-
est expected utility at that time. However, this is incorrect. Such a
definition amounts to determining the stopping time in advance, be-
fore any assignments have happened, and using the same stopping
time no matter what assignments happen. Instead, the decision of
whether to stop at time 2 may depend on assignments that happen
at time 1. Therefore we define a policy to determine what to do in
all situations the decision maker might face.

DEFINITION 8 (POLICY). A policy is a function π : G →
{stop, wait}, where G is the set of all global assignments

If the policy specifies to stop, the decision maker also needs to
decide which candidate to choose. Since this decision is simple we
do not include it in the definition of a policy.

One option to represent our problem would be to use Markov
Decision Processes (MDP). In such a model, the states at time t
would be the time t global assignments, and the actions would be
to either select the best candidate at that time, or wait one more time
step. The transition function from a time t state to a time t+1 state
for a wait action would be given by the product of the probabilities
of the time t + 1 assignments. A stop action leads to a terminal
state in which a reward is received equal to the gain of the winning
candidate.

The usual advantage of an MDP formulation is to be able to use
dynamic programming methods like value iteration and policy it-
eration. However, in our problem dynamic programming has no
benefit because the same state cannot be reached by different paths,
and the number of states is exponential in the total number of vari-
ables in all the trees. One of the methods to address large MDPs is
factored MDPs [1, 5]. This approach is not viable in our domain
because the utility of stopping is a maximization over the utilities
in all the trees, which depends on all the variables. As we will show
in Section 5, there is a special structure in our problem that is not
readily apparent in the MDP or factored MDP formulation.

4. OPTIMAL ALGORITHM
The optimal gain can be calculated by a decision tree approach.

The optimal decision tree merges the candidate trees into a single
decision tree whose depth is the maximal time of the variables in
the candidate trees. In this decision tree, there are three kinds of
nodes:

Decision nodes, in which the decision maker must decide whether
to stop or to wait, and if to stop, which candidate to choose.

Stop nodes, where the decision maker has stopped and chosen one
of the candidates.

Wait nodes, where the decision maker has decided to wait.

Each node is marked with a time stamp. Edges leading out of wait
nodes are labeled by conjunctions of assignments. Every node in
the tree is marked by a set of assignments, which are the assign-
ments on the path leading up to the node.

The tree is constructed as follows:

1. The root is a decision node with time stamp 0.

2. The children of decision nodes with time stamp t are the wait
node with time stamp t, and all the stop nodes for all candi-
dates with time stamp t. If t is the final time step, no wait
node child is included.

3. Stop nodes are leaves of the tree. The label of a stop node is
the gain of stopping and choosing that candidate, given the
assignments that have happened so far, and taking into ac-
count the cost of waiting until that time. However, the cost
is not equal to the sum of costs of all assignments in the path
leading to the node in the optimal tree, because assignments
that are not part of the candidate tree of the winning candi-
date are not considered. Instead, if the stop node corresponds
to node n ∈ cti, the value of the node is GN (n) (Definition
7).

4. The children of a wait node with time stamp t are determined
as follows:

(a) Let A be the assignments on the path leading to the
node.

(b) Let Vi be the timed variables in candidate tree cti with
time stamp t + 1 such that all assignments on the path
to Vi in cti are in A.

(c) Let V =
⋃

i Vi.

(d) For each joint outcome of the variables in V , the wait
node has a child, labeled by the set of assignments com-
prising that outcome. The child is a decision node with
time stamp t + 1. The branch to the child is labeled
by the product of the probabilities of those assignments
(since we assume the variables are independent).

Once the tree has been constructed, it can be evaluated using a
simple bottom-up process. The gains at the leaves, i.e. the stop
nodes, have already been calculated. The gain of a wait node is the
expectation of the utilities of its children. The gain of a decision
node is the maximum gain of its children, and the optimal decision
is the one that leads to maximal gain. The decision tree is generated
and evaluated in advance, before any assignments have happened.
Its solution represents a policy (Definition 8).

Figure 3 presents the optimal decision tree for a decision prob-
lem with candidate trees ct1 (Figure 1) and ct2 (Figure 2). The

269

0.67

0.66 0.67

0.4 0.6

0.73 0.63

0.73 0.58 0.630.73

0.3 0.7

0.73

0.66
0.71

0.8

0.76 0.51

1

0.3 0.7

0.69 0.6

0.58 0.69

0.8 0.2

0.71 0.58

0.58 0.6

0.6

0.54 0.60.71 0.71

1

0.76 0.76

0.76

1

0.51 0.51

0.51

0.1

0.710.71

0.9

0.58 0.56

0.610.5

0.9 0.1

0.50.66

0.36 0.54

0.610.6

0.04 0.06

0.73
0.72

0.8 0.2

0.76 0.57

0.76 0.76

0.76

0.53 0.57

0.60.76

0.4 0.6

0.51

0.4 0.6

0.76 0.71 0.51 0.3 0.76 0.66 0.76 0.41 0.51 0.66 0.51 0.41 0.5 0.71 0.61 0.71 0.5 0.3 0.61 0.36 0.56 0.66 0.56 0.41 0.61 0.66 0.61 0.41

0.73

1

2

3

4

Decision Time Horizon
0

0.2

0.59

0.59 0.59

0.73 0.53 0.66 0.53

0.580.360.580.510.530.360.71

Figure 3: Optimal decision tree for ct1 and ct2 candidate trees.

axis on the right of the graph represents the time horizon of the de-
cision. The rectangle nodes represent decision nodes, the shaded
ellipse nodes represent wait nodes and the empty ellipse nodes rep-
resent stop nodes.1 The stop nodes come in pairs, one for each
candidate; the node for c1 is on the left. The numbers in the nodes
represent expected gains, computed using the bottom up algorithm.
We used the cost function in which the cost of every event is 0.02,
so the cost of reaching a leaf is 0.04 (since two events happen on
the path to every leaf).

For example, consider the dashed triangle on the right hand side
of the figure. The root of the subtree shown in this triangle is a wait
node with time stamp 3. In determining the children of this node,
we consider all variables in the candidate trees with time stamp
4. There are two such variables, v4 for candidate c1 and v5 for
candidate c2. We need to split on all joint outcomes of these two
candidates, so the wait node has four children. Each of these chil-
dren is a decision node with time stamp 4. Since this is the last time
stamp, these decision nodes only have stop nodes as their children.

For a second example, consider the dashed triangle on the left
hand side of the figure. v3 is a common variable; although both
candidates split on a variable at this point, since it is a common
variable we only need to split on the outcomes of a single variable
in the optimal tree (the only two consistent paths). Thus common
variables can help make the optimal tree smaller.

In bold we have shown one particular course of events. At the
decision node at the root, the gain of the wait node child (0.67) is
higher than that of the best stop node child (0.66) so the agent waits.
Then, in this course of events, the assignment v1 = left happens.
At the next decision node child, the gain of stopping with candidate
c1 (0.73) is as high as that of waiting (0.73), so the agent may stop
and chooses c1.

Assume the sequence of assignments happened as shown in bold
in the figure. This leads eventually to a leaf node whose gain is

1To keep the figure readable, the stop nodes at the final time do
not have ellipses. Also, we have omitted assignment labels on the
edges.

shown as 0.76. Note, however, that this gain incorporates the cost
of waiting two assignments to make the decision. Now, if the agent
had been omniscient and known the outcomes of variables in ad-
vance, it would have obtained gain 0.8, since it would not have to
wait at all. For a realistic agent who stops in time 1, the gain for
choosing c1 is 0.8−0.02 = 0.78 (since one event has happened).

To determine the complexity of the optimal algorithm, consider
first the case where there are no common variables. Since there
are no common variables, every path in one candidate is consistent
with every path in another candidate. Thus the optimal tree will
contain a path corresponding to every combination of paths in all
candidates. Let the maximum size of a candidate tree be M and the
number of candidates be n. Then the worst-case size of the optimal
tree is O(Mn).

Now, consider the opposite extreme, where all candidates share
the same variables. One might think that in this case the size of the
optimal decision tree is polynomial in the number of candidates.
Unfortunately this is not the case. The problem is that even though
the candidates share variables, the variables may appear at different
places in the trees. To illustrate, suppose we have two candidates
ct1 and ct2 with three variables v1, v2 and v3. v1 is the root in
both candidates. In ct1, v2 is the left child of v1 and v3 is the right
child, while in ct2 it is the other way around. The paths [v1 =
left, v2 = left] and [v1 = left, v2 = right] in ct1 are both consistent
with [v1 = left, v3 = left] and [v1 = left, v3 = right] in ct2, so
we have to consider all their combinations in the optimal tree and
the complexity remains exponential in the number of candidates.
It is clear that this example can be extended to arbitrarily many
candidates by widening the trees.

The best-case scenario is where all candidates share the same
variables in the same order. In this case the size of the optimal tree
grows polynomially in the size of the candidates’ trees.

5. SOLVING EACH CANDIDATE SEPARATELY
The optimal algorithm presented in Section 4 considers all can-

didates simultaneously. In this section, we develop an alternative

270

algorithmic framework, in which the candidates are considered sep-
arately. This alternative viewpoint will lead us to more efficient
heuristic algorithms in Section 6.

The main idea behind the alternative framework is that each can-
didate makes a separate contribution to the overall utility. Specif-
ically, a candidate only contributes to the overall utility when the
candidate actually wins. Thus we can estimate the value of reach-
ing a node in a candidate tree in the future by the expected gain of
the node times the probability that the candidate will win given that
the node is reached.

DEFINITION 9 (PROBABILITY OF WINNING). Let n be a node
in candidate tree cti with time t. The probability of winning for ci

at n, denoted Pr(ci wins|n) is the probability that the expected
utility of n is greater than that of every other candidate at time t,
given the assignments on the path leading to n.2

DEFINITION 10 (RELATIVE EXPECTED GAIN). The relative ex-
pected gain of node n in candidate tree cti is GN (v)Pr(ci wins|v).

In the alternative framework this value is estimated by construct-
ing a separate decision tree for each candidate as follows. The in-
dividual candidate decision trees are generated in a manner similar
to the optimal decision tree, except that relative expected gain is
used instead of expected gain. Each of the decision trees for each
of the candidates is solved in a manner similar to the optimal tree.
At this point, if we consider the stop values at time 0, exactly one
candidate will have probability 1 of winning and all others will have
probability 0, since there is no uncertainty about which candidate
will be chosen if the decision is taken immediately. Therefore the
agent can compare the expected gain of the immediately winning
candidate with the sum of the values of the wait node children of
the roots of all the trees. Intuitively, the value of a wait node for
a candidate estimates that candidate’s contribution to the benefit of
waiting, so if the sum of the wait values is greater than the maxi-
mum immediate expected gain, that means that the total expected
gain of waiting is greater than the expected gain of stopping, in this
case the decision will be to wait. Otherwise, the decision will be to
stop and choose the candidate with the highest expected gain.

If the agent decides to wait, some assignments will happen. At
this point the decision trees need to be recomputed. Some parts of
the candidate trees will be inconsistent (see Definition 2) with the
assignments. Therefore the candidate trees can be pruned only to
include the consistent assignments. This may change the probabil-
ity of winning, because the event of winning at some future node is
conditioned on the assignments that have already happened.

Before analyzing the algorithm we present some definitions. The
first definition describes the relationship between a global assign-
ment and a path through an individual candidate tree. Intuitively,
the projection of a global assignment onto a candidate is the path
in the individual candidate tree resulting from that assignment.

DEFINITION 11 (PROJECTION). The projection of a time t global
assignment σt onto candidate ci, denoted σt

i , is the maximal path
of assignments through cti such that each assignment is in σt. Such
a path is called a local sequence. The set of all global assignments
whose projection is σt

i is denoted by C(σt
i).

The next definitions describe the relationship between a global
policy and a set of policies for individual candidates.

2We assume that ties between candidates are broken in a consistent
manner.

DEFINITION 12 (LOCAL POLICY). A local policy for candi-
date ci is a rule that dictates either stopping or waiting for each
local sequence σt

i . For contrast, we will sometimes use the term
global policy to mean a policy.

DEFINITION 13 (COMPATIBLE). A global policy π is com-
patible with a set of local policies π1, ..., πn if, for every global as-
signment σt, and the projection σt

i for each candidate ci, π(σt) =
πi(σ

t
i).

Some global policies are not compatible with any set of local
policies, and some sets of local policies are not compatible with
any global policy. For a set of local policies to be compatible with
a global policy, if the same sequence appears in more than one of
the candidate trees, all the local policies for those candidates must
make the same decision for that sequence. If this does not hold,
there can be no global policy that agrees with all the local policies.
For a global policy to be compatible with a local policy, it must
make the same decision for all global assignments that are consis-
tent with a local sequence appearing in one of the candidates. If
this does not hold, the global policy will specify multiple decisions
for the sequence. In the case that we have a global policy and com-
patible local policies, we show that computing the expected utility
in the optimal and candidate-based algorithms produces the same
result (see the proof in the Appendix):

THEOREM 1. Let π be a policy and π1, ..., πn a compatible set
of local policies. Let GN (π) denote the expected gain of policy π
as computed in the optimal decision tree, and let GN i(πi) denote
the expected gain of local policy πi computed in the decision tree
constructed for the candidate ci by the alternative algorithm. Then
GN (π) =

∑
i GN i(πi).

This result yields insight into the operation of the approximate
algorithm. Splitting up the calculations into the individual candi-
date trees is in fact correct. What makes this algorithm approx-
imate is that by focusing on local policies, and then extracting a
global policy from those, it forces a different set of policies to be
considered when considering the expected gain of waiting until a
node is reached in the future. On the one hand, it does not allow a
decision for an individual candidate to depend on assignments that
only affect other candidates, which may cause the algorithm to miss
possibilities that would give it higher utility and underestimate the
expected gain. On the other hand, it allows different candidates to
make incompatible decisions in the future, which might cause it to
overestimate the expected gain.

6. COMPUTING PROBABILITY OF WIN-
NING

A key step in the candidate-based algorithm is computing the
probability that a candidate wins, given that a certain node in the
candidate tree is reached. To compute the probability of winning,
we note that: Pr(ci wins|n) = Pr(

∧
j �=i ci beats cj |n) .

In principle, the events on the right hand side of this equation are
not independent, since the different candidates may share common
variables. Therefore, if were to compute this probability exactly,
the complexity of the algorithm might still be exponential in the
number of candidates. Therefore we need to approximately com-
pute this probability. The simplest approximation is to assume the
events of beating different candidates are independent. So we get

Pr(ci wins|n) ≈
∏
j �=i

Pr(ci beats cj |n)

271

1

1

0.24

0.24

0.7

0.18

0.18

0.18

0.18

0.6

00.45

0.4

0.37

0.8 0.2

1

2

3

4

Decision Time Horizon
0

0.46

0.46

0.46

(0.75) 0.46

1

0

0

0

0.40

0.3

(0.4) 0 (0.7) 0.45 (0.45) 0

(0.75) 0.46 (0.4) 0 (0.55) 0.04

(0.68) 0.40 (0.55) 0

(0.59) 0

1

0.24

0.24

(0.59) 0

Figure 4: Candidate decision tree for candidate c2.

Now, to compute Pr(ci beats cj |n), we consider nodes nj in ctj
that are consistent (see Definition 2) with n. Not all such nodes
are considered; they must have the right time. Let the time stamp
of the variable at node n be t. A node has the right time if its
variable’s time stamp is at least as great as t, and its parent’s time
stamp is not. This means that the node’s variable is the first thing
to be decided after time t. Therefore, if the decision maker had
to make the decision about candidate cj at time t, it would use
the expected gain of the subtree rooted at that node. We will use
ok(nj |n) to indicate that nj is consistent with n and has the right
time. For each such node nj , if the expected utility of n is greater
than nj , we add nj’s probability to the probability that ci beats cj .
Formally,

Pr(ci beats cj |n) =∑
(nj∈ctj :ok(nj |n) and EU(n)>EU(nj))

P (nj |n)∑
(nj∈ctj :ok(nj |n))

P (nj |n)

It remains to compute P (nj |n). This is the product of the proba-
bilities of assignments along the path to nj that do not appear along
the path to n.

Figure 4 presents the decision tree of ct2 (Figure 2). The leaves
contain two numbers, the first represents the expected utility and
the second (in bold) represents the relative expected gain.

For example, let us compute the relative expected gain of the
leftmost bottom-level node. This node is reached after v2 and v3

both came out left, and waiting till t = 4. At this point, there are
three nodes in ct1 consistent with this node, with utilities 0.8, 0.6
and 0.65. This node, with utility 0.75, beats the latter two nodes,
whose total probability is 0.6. The total probability of all nodes
in ct1 consistent with this node is 0.6 + 0.4 ∗ 0.8 = 0.92, so the
probability of winning is 0.6/0.92 = 0.65. To compute the relative
expected gain of this node (see Definition 10), we multiply the gain,
which is 0.75 − 0.04 = 0.71, by the probability of winning, to get
0.46.

If we compute the decision tree of candidate c1 too, we find that
the optimal choice at time 0 is to wait. Suppose that variable v1,

determined at t = 1, came out left. The decision trees are now
updated. Candidate c1’s tree is pruned so that it only includes the
subtree rooted at v3. Consider, for example, the third leaf of ct2
in Figure 2, whose utility is 0.7. In estimating its probability of
winning, we see that candidate c1 will have, at this time, utility 0.8
with probability 0.8 and utility 0.55 with probability 0.2. Thus c2’s
probability of winning is 0.2 (in which 0.7 > 0.2). Now consider
the leftmost leaf in Figure 2, with utility 0.75. Because v3 is a
common variable, the only node in ct1 consistent with this leaf is
the leftmost leaf in Figure 1, with utility 0.8. Thus c2’s probability
of winning is now 0.

If we use this approximation of the probability of winning, the
complexity of our heuristic algorithm is only polynomial in the
number of candidates since we build a decision tree for every candi-
date separately. To be precise, again let the maximum size of a can-
didate tree be M and the number of candidates be n. When evalu-
ating each candidate tree, we must compute probability of winning
at O(M) nodes. For each such node, we perform a summation
over O(M) nodes in each of the other candidate trees. We must do
this for all n candidate trees. Thus the total cost of the algorithm
is O(M2n2). This compares favorably to O(Mn) for the optimal
algorithm if the number of candidates is large.

Assuming complete independence between the candidates is only
the simplest possibility that results in the fastest runtime. An al-
ternative is to compute the probabilities exactly, perhaps using an
algorithm such as variable elimination. In the worst case this com-
putation is exponential in the number of common variables. One
might therefore try alternative ways of approximating the proba-
bility. We do not go into these alternatives in this paper, but note
that our framework is general enough to accommodate many such
approaches. Finally, we remark that in the case where there are no
common variables, assuming independence is exactly correct, but
the algorithm is still a heuristic for the reasons described in Sec-
tion 5.

7. EMPIRICAL EVALUATION

We evaluated our algorithms considering two metrics: runtime
and the utility of the candidate. To normalize the utility, we divided
it by the utility obtained by an omniscient agent with no cost. We
compared the optimal algorithm to the heuristic algorithm in which
the probability of winning is computed assuming the events of beat-
ing all candidates are independent. We also compared them to two
baseline algorithms: (1) stopping strategy: the agent determines
the winning candidate at the beginning based only on the expected
utility; (2) waiting strategy: the agent determines the winning can-
didate at the end based on full information.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
#candidates

ru
nt

im
e

(m
s)

Optimal
Heuristic
Stop
Wait

Figure 5: One third common variables: Runtime over the num-
ber of candidates.

We conducted a simulation inspired by the stock market with a
wide variety of conditions. The utility of each stock was evaluated

272

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
#candidates

qu
al

ity
Optimal
Heuristic
Stop
Wait

Figure 6: One third common variables: Quality of the decision
over the number of candidates.

0
20
40
60
80

100
120
140
160
180

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
#candidates

ru
nt

im
e

(m
s)

Optimal
Heuristic
Stop
Wait

Figure 7: All common variables: Runtime over the number of
candidates.

by its profit. The timed variables were represented by economic
events like interest decreasing that influence the stocks’ value. We
ran simulations with both common variables and independent vari-
ables. The waiting cost of all assignments was fixed to a constant
K, representing the cost of waiting one time unit. In the simulation
we fixed K to be two orders less than the expected value of the
stocks.

We simulated varying stock market settings, in particular we var-
ied the number of stock candidates (2-30), the time horizon of the
economic events and the constant cost K. For space limitation, we
present only a subset of the results. In these results, we fixed the
time horizon to four time units, and the constant cost to K = 2.8.
In the context of the stock market simulation the meaning is that for
each time unit of one month the cost of waiting is a loss of $2.8K,
where the maximum profit is $100K.

We set experiments in which a third of the economic events are
common variables. We measured the runtime to compute when to
make the decision and the quality of the decision. Figure 5 presents
the runtime in milliseconds over the number of candidates. Each
data point is an average of 900 tests. As analyzed in Section 4 the
runtime of the optimal algorithm grows exponentially in the num-
ber of candidates but only polynomially for the heuristic algorithm.
Figure 6 presents the quality of the decision over the number of
candidates. The heuristic algorithm is better than the baseline algo-
rithms and close to the optimal algorithm.

To illustrate the results in the context of the stock market, the
maximum profit is $100K from the point of view of an omniscient
agent. The optimal algorithm for 14-18 candidates achieves 95%
of the maximum. For the same number of candidates the heuristic
achieves 92.5% which is less by $2500 than the optimal algorithm.
However, the stopping and the waiting baseline algorithms achieve
only 88.5% which is less by $6500 than the optimal.

We have further run our algorithms in two extreme environments

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
#candidates

qu
al

ity

Optimal
Heuristic
Stop
Wait

Figure 8: All common variables: Quality of the decision over
the number of candidates.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
#candidates

ru
nt

im
e

(m
s)

Optimal
Heuristic
Stop
Wait

Figure 9: No common variables: Runtime over the number of
candidates.

with (1) worst case: no common variables and (2) best case: all
variables are common and in the same locations in the candidate
trees. In the last environment, the runtime of the optimal algorithm
decreases significantly by two orders compared to the environment
with one third common variables and is even faster than the heuris-
tic (Figure 7)3. However, its utility slightly decreases and the util-
ity of the heuristic slightly increases (Figure 8). On the other hand,
the runtime of the optimal algorithm significantly increases in en-
vironments with no common variables, much more even than the
environment with third common variables (Figure 9),4 and in fact
we could not run it with more than seven candidates. In Figure
10 we can see the same tendency as in the other environments that
the quality of the heuristic is better than the baseline algorithms
and close to the optimal. We have obtained similar results in other
conditions of costs and time horizons.

8. SUMMARY AND FUTURE WORK
In this paper we presented the problem of finding the best time

to determine the winning candidate in an uncertain environment
where information about the candidates arrives dynamically. We
proposed a model to represent the arrival of dynamic information
and its influence on the utilities of the candidates. We presented an
optimal algorithm and a framework of heuristic algorithms to find
the best time and candidate. We analyzed the algorithmic frame-
work to thoroughly understand the source of its approximation. We
empirically showed that although the simplest heuristic algorithm
does not guarantee the optimal time and winner, it presents high

3At the end of Section 4 we showed that the complexity of the opti-
mal algorithm is exponential even in case of all common variables.
However, here we run experiments where the locations of the vari-
ables are the same in all candidate trees. That fact explains the
non-exponential runtime.
4All the results are statistically significant.

273

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
#candidates

qu
al

ity
Optimal
Heuristic
Stop
Wait

Figure 10: No common variables: Quality of the decision over
the number of candidates.

quality results close to the optimum. On the other hand, it is much
faster than the optimal algorithm in terms of runtime.

In future we will study the performance of heuristic algorithms
that use other methods for computing the probability of winning,
such as variable elimination. We will also consider representations
in which candidates interact not only through common variables
but also through dependencies between variables. In addition, we
plan to extend the problem to multi-agent systems, where a set of
agents should make a joint decision over multiple candidates. In
such a situation, each agent will receive different information, and
therefore they will differently estimate the probabilities of future
information and the expected value of different candidates.

9. REFERENCES
[1] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic

dynamic programming with factored representations.
Artificial Intelligence, 121:49–107, 2000.

[2] T. Ferguson. Who solved the secretary problem? Statistical
Science, 4:282–289, 1989.

[3] J. Figueira, S. Greco, and M. Ehrgott. Multiple Criteria
Decision Analysis: State of the Art Surveys. Springer Verlag,
Boston, Dordrecht, London, 2005.

[4] L. Finkelstein and S. Markovitch. Optimal schedules for
monitoring anytime algorithms. Artificial Intelligence,
126:63–108, 2001.

[5] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman.
Efficient solution algorithms for factored MDPs. Journal of
Artificial Intelligence Research (JAIR), 19:399–468, 2003.

[6] E. A. Hansen and S. Zilberstein. Monitoring and control of
anytime algorithms: a dynamic programming approach.
Artificial Intelligence, 126(1-2):139–157, 2001.

[7] E. Horvitz. Principles and applications of continual
computation. Artificial Intelligence, 126:126–1, 2001.

[8] E. Horvitz and G. Rutledge. Time-dependent utility and
action under uncertainty. In In Proceedings of Seventh
Conference on Uncertainty in Artificial Intelligence, pages
151–158. Morgan Kaufmann, 1991.

[9] V.-N. Huynh, Y. Nakamori, T. B. Ho, and T. Murai.
Multiple-attribute decision making under uncertainty: the
evidential reasoning approach revisited. IEEE Transactions
on Systems, Man, and Cybernetics, Part A, 36(4):804–822,
2006.

[10] A. Kangas. The risk of decision making with incomplete
criteria weight information. Canadian Journal of Forest
Research, 36:195–205, 2006.

[11] R. Keeney and H. Raiffa. Decisions with Multiple
Objectives: Preferences and Value Trade-offs. Cambridge
University Press, Cambridge, 1993.

[12] R. Lahdelma and P. Salminen. Pseudo-criteria versus linear
utility function in stochastic multi-criteria acceptability
analysis. European Journal of Operational Research,
141:454–469, 2002.

[13] R. Lahdelma and P. Salminen. Stochastic multicriteria
acceptability analysis using the data envelopment model.
European Journal of Operational Research, 170(1):241–252,
April 2006.

[14] G. Peskir and A. Shiryaev. Optimal Stopping and
Free-Boundary Problems. Birkhäuser Basel, 2006.

[15] J. B. Yang and D. L. Xu. On the evidential reasoning
algorithm for multiattribute decision analysis under
uncertainty. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 32(3):289–304,
May 2002.

[16] K. Yoon and C. Hwang. Multiple Attribute Decision Making:
An Introduction. Sage Publications, 1995.

[17] W. Zhang. Iterative state-space reduction for flexible
computation. Artificial Intelligence, 126(1-2):109–138, 2001.

Appendix: Proof of Theorem 1
The proof uses the concept of terminal assignments, which result
in stopping immediately. Only terminal assignments actually con-
tribute to the expected utility of the policy.

DEFINITION 14 (TERMINAL). Let π be a policy and πi a lo-
cal policy. A global assignment σt is terminal for π if π(σt) =
stop. Similarly a local sequence σt

i is terminal for πi if πi(σ
t
i) =

stop. The set of terminal assignments (resp. sequences) for π (resp.
πi) is denoted T (π) (resp. T (πi)).

Proof of Theorem 1: On the one hand, we have

GN (π) =∑
t

∑
σt∈T (π)(max U(ci|σt) − CST (σt

arg maxU(ci|σt)
))P (σt) =∑

t

∑
σt∈T (π)

∑
i(U(ci|σt) − CST (σt

i))[ci wins |σt]P (σt)

where [.] denotes the indicator function. Here we have used the fact
that ci wins if and only if ci = arg maxU(ci|σt), so max U(ci|σt) =∑

i U(ci|σt)[ci wins |σt]. On the other hand, we have

GN i(πi) =∑
t

∑
σt

i∈T (πi)
(U(ci|σt

i) − CST σt
i)P (ci wins |σt

i)P (σt
i) =∑

t

∑
σt

i∈T (πi)

∑
σt∈C(σt

i)
(U(ci|σt

i) − CST (σt
i))

[ci wins |σt]P (σt)
=∑

t

∑
σt∈T (π)(U(ci|σt) − CST (σt

i))[ci wins |σt]P (σt)

The second line holds because the probability ci wins for a given
local sequence σt

i is the sum, over all possible completions of σt
i

into a global assignment σt, of the probability ci wins for σt. Those
global assignment are precisely those whose projection is σt

i .
the probability that ci wins is precisely the sum of the probabil-

ities of global assignments such that it wins. The third line uses
the fact that for compatible policies, a global assignment σt con-
sistent with σt

i is in T (π) if and only if σt
i is in T (πi). It also

uses the fact that the utility of ci is determined only by cti, so
U(ci|σt

i) = U(ci|σt). From the last line, we have∑
i GN〉(πi) =∑
i

∑
t

∑
σt∈T (π)(U(ci|σt) − CST (σt

i))[ci wins |σt]P (σt) =∑
t

∑
σt∈T (π)

∑
i(U(ci|σt) − CST (σt

i))[ci wins |σt]P (σt) =

GN (πi)

274

